



1. Disegni tecnici - Technical drawings

CUBE-COM

Doporučujeme použít svěrné šroubení CUBE-COM. Není součástí balení.

3. Kv e Perdita di carico – Kv & Pressure drop

K۷

Il coefficiente Kv definisce il flusso di acqua, espresso in m³/h, che attraversa una valvola con una pressione differenziale (caduta di pressione) di 1 bar.

Con questo dato è possibile:

- Calcolare la portata che attraversa la valvola, in funzione della differenza di pressione Formula di calcola: Q = Kv x √ ΔP
- Dimensionare la valvola in funzione della portata e della perdita di carico che si intende accettare

Formula di calcola: Kv = Q / $\sqrt{\Delta}$ P

 Calcolare la perdita di carico concentrata della valvola, in funzione della portata e del Kv Formula di calcola: ΔP = (Q / ΔP)²

Perdita di carico

La perdita di carico rappresenta l'energia necessaria al fluido per spostarsi con una data portata (o velocità) tra due sezioni di un circuito idraulico, vincendo l'attrito.

Κv

The coefficient Kv defines the water flow, expressed in m³/h, through a valve with a differential pressure (pressure drop) of 1 bar.

With this data you can:

- Calculate the flow through the valve, in function of the pressure difference Calculation formula: Q = Kv x √ ∆P
- Size the valve as a function of flow rate and pressure drop that you intend to accept Calculation formula: Kv = Q / √ ∆P
- Calculate the loss of concentrated load of the valve, in function of the flow and Kv Calculation formula: ΔP = (Q / ΔP)²

Pressure drop

The pressure drop is the energy required by the fluid to move with a given flow rate (or speed) between two sections of a hydraulic circuit, winning the friction.